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What Cryptography Can Accomplish

Confidentiality Only the other party can read the original messages

Authenticity Verify who is on the other end of the communication channel

Integrity No other party can change or add messages

Other features are often desired, e.g., non-repudiation.
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Outline

1. Ciphers and hashes

2. Big numbers

3. Primes

4. Private communication

5. Public/private-key communication
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1 Ciphers and Hashes: Ciphers

encrypt(message, secret) = cipher

decrypt(cipher, secret) = message

decrypt(encrypt(message, secret), secret) = message

Ciphers map a message to a same-length unique ciphertext, which can be reversed.
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AES (Advanced Encryption Standard)

• 128-bit block cipher

• Supports key lengths of 128, 192, and 256 bits, e.g., AES128 uses a 128-bit key
• Uses confusion (substitution) and diffusion; see https://en.wikipedia.org/wiki/

Confusion_and_diffusion

• No known attack except for exhaustive key search (this is ideal)
• AES-specific CPU instructions speed processing 3–10x, e.g., AES-NI (check

/proc/cpuinfo for “aes”), see https://www.cyberciti.biz/faq/
how-to-find-out-aes-ni-advanced-encryption-enabled-on-linux-system/

• Elegant algorithm based on polynomials over finite fields, see https://en.wikipedia.
org/wiki/Advanced_Encryption_Standard

• Trusted by the US government for top secret communication
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One Cycle of AES

AES128 requires 10 cycles. https://commons.wikimedia.org/wiki/File:AES_Encryption_Round.png
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Cipher Modes

message = 128bit1||128bit2|| . . .

encrypt(message, secret) = encrypt(128bit1, secret)||encrypt(128bit2, secret)|| . . .

block encrypt(128bit1, secret) = cipher(secret, 128bit1 XOR (previous output OR nonce)) (CBC)

stream encrypt(128bit1, secret) = 128bit1 XOR cipher(secret, counter||nonce) (CTR,GCM)

Stream encryption built on block ciphers is particularly useful for streaming protocols,

e.g., SSH. You can generate a 128-bit encryption block and XOR the 16 bytes individually.
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CTR (Counter) Illustrated

https://commons.wikimedia.org/wiki/File:CBC_encryption.svg
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GCM (Galois Counter Mode) Illustrated

GCM is similar to CTR mode but also creates an integrity tag that can be used to verify that the
entire message was created with the same secret key and unmodified.

https://en.wikipedia.org/wiki/Galois/Counter_Mode\#/media/File:GCM-Galois_Counter_Mode.svg
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Hash

hash(message) = hash

function(hash) 6= message

A hash maps a variable-length value to a fixed-length value, with minimal collisions.

Collisions are likely at
√

hash space, e.g., a hash algorithm with 2256possible outputs is

likely to generate a collision among 2128 outputs. The hash name indicates the hash

output bit length, e.g., SHA-256, SHA-384.
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Hashing Illustrated

https://commons.wikimedia.org/wiki/File:Hash_function_long.svg
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MAC (Message Authentication Code)

hash(message, secret) = hash

hash(message,no secret) 6= matching hash

• Hashing (or limited block encryption) allows you to safely prove you know a secret

• Someone who also knows the secret can compute the same MAC and check that it

matches

• Others who see the MAC can’t reverse it to divulge the secret

• A message authentication code (MAC) proves that the message was created by

someone who knows the secret
• Multiple pieces of information can be combined in a single hash, e.g.,

• often the message, message length, and secret key are combined to produce a single
hash value

• this proves the message was produced by someone who knows the secret
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MAC Illustrated

https://commons.wikimedia.org/wiki/File:Cryptographic_MAC_based_message_authentication.png
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Split Keys

While it is possible to merge secrets in a single hash, it is also possible to split a secret

into parts so all parts are needed to reconstruct the secret, e.g two parts:

key1 = random number

master secret XOR secret1 = secret2

to reconstruct

secret1 XOR secret2 = master secret

This can be repeated to split a key into any number of parts; see https://en.wikipedia.org/
wiki/Secret_sharing.
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2 Big Numbers: Exponentiation

ab = a × a × a...(b times)

e.g.,

25 = 2 × 2 × 2 × 2 × 2

7E9 = 7 × 109 = 7,000,000,000
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Logarithms

ab = c

b × log a = log c

b =
log c

log a
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CPU Register Sizes

32 bit 232 ∼= 4E9

64 bit 264 ∼= 2E19
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Real World Sizes

• Seconds in a billion years: 3E16

• Atoms in the universe: 1E80

• Possible chess games: 1E120
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Cryptography Sizes

• AES128 (128 bit): 3E38

• ECDHE prime (224 bit): 2E67

• AES256, SHA256 (256 bit): 1E77

• RSA prime (1024 bit): 2E308
• DH prime, RSA composite (2048 bit): 4E616

• strength equivalent to a 112-bit symmetric cipher (3E35)

• Random values with range 2b likely repeat after 2b/2values

• Adding a bit doubles the strength, adding two bits quadruples the strength

• Doubling the number of bits exponentially increases the strength

This video explains the difficulty of breaking large computed secrets, https://www.youtube.
com/watch?v=S9JGmA5_unY.

https://en.wikipedia.org/wiki/Key_size
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3 Mathematical Concepts

1. Exponential commutativity

2. Prime number

3. Modulus

4. Finite field

5. Generator

6. Primitive element

7. Trapdoor function
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Exponentiation Commutativity

gxy
= gx·y = gy·x = gyx
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Prime Number

A prime number is a natural number greater than one that is not a product of two
smaller natural numbers; see https://en.wikipedia.org/wiki/Prime_number.
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Modulus

The modulus is the remainder of division after one number is divided by another; see

https://en.wikipedia.org/wiki/Modulo_operation:

9 mod 7 = 2

9 % 7 = 2
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Finite Field

A finite/Galois field is a field that contains a finite number of elements and where
multiplication, addition, subtraction and division are defined and satisfy certain basic
rules; see https://en.wikipedia.org/wiki/Finite_field.
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Generator

Six raised to an integer power modulus 7 generates a finite field containing 1 and 6:

60 mod 7 = 1

61 mod 7 = 6

62 mod 7 = 1

63 mod 7 = 6
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Primitive Element

Three is a primitive element of 7 because it generates the full set of the finite field values

less than 7:

31 mod 7 = 3

32 mod 7 = 2

33 mod 7 = 6

34 mod 7 = 4

35 mod 7 = 5

36 mod 7 = 1

37 mod 7 = 3

38 mod 7 = 2

Generating all numbers of a finite field in unpredictable order is fundamental to

cryptography.
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Trapdoor Function

Trap door functions are functions where it is difficult to compute previously-generated

values; see https://en.wikipedia.org/wiki/Trapdoor_function. Here is the previous function

in numeric output order, which is a good example of a trap door function:

1 = 36n mod 7

2 = 36n+2 mod 7

3 = 36n+1 mod 7

4 = 36n+4 mod 7

5 = 36n+5 mod 7

6 = 36n+3 mod 7

for any positive integer n. You can see it is difficult to determine the

previously-generated values.
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4 Private Communication: Ephemeral Diffie–Hellman (DHE)

Assume g is a (sub-group) generator of (safe) prime p:

Alice Bob

agree on g and p agree on g and p
generate random x generate random y
compute gx mod p compute gy mod p
send gx mod p → ← send gy mod p
receive gy mod p ← → receive gx mod p
use x, compute (gy mod p)x mod p use y, compute (gx mod p)y mod p
use as shared key gyx

mod p use as shared keygxy
mod p

Viewing transmission of g, p, gx mod p, and gy mod p does not allow easy discovery of x, y, or
gxy

mod p (the secret key). This seems trivial until you realize it is being done using 2048-bit
(3E616) values. Exponentiation by high powers can be performed efficiently using
exponentiation by squaring (binary exponentiation), optimized via modular exponentiation.
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The Result

Both users have the same secret key:

gyx
mod p = gxy

mod p

while anyone viewing the exchange cannot derive the secret key. There is no information

in the key. Instead, the computed key is used to generate a session key for encryption.
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Fake Addition Key Exchange Example

Pretend you can’t reverse the modulo computation (this is the effect of a large

exponent):

Alice Bob

agree on g=6 and p=7 agree on g=6 and p=7
generate random x=5 generate random y=4
compute (6+5) mod 7 = 4 compute (6+4) mod 7 = 3
send 4 → ← send 3
receive 3 ← → receive 4
use 3, compute (4 + 3) mod 7 = 0 use 4, compute (3 + 4) mod 7 = 0
use as shared key 0 use as shared key 0
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Real Key Exchange Example

This uses very small values:

Alice Bob

agree on g=3 and p=7 agree on g=3 and p=7
generate random x=3 generate random y=4
compute 33 mod 7 = 6 compute 34 mod 7 = 4

send 6 → ← send 4
receive 4 ← → receive 6
use 4 to compute 64 mod 7 = 1 use 6 to compute 46 mod p = 1

use as shared key 1 use as shared key 1
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Unpredictability of Modulus Exponentiation
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Unpredictability of Modulus Exponentiation
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While it is computationally easy to compute higher exponents from a given modulus, it
is computationally impossible to compute lesser exponent moduli (a trapdoor function).
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Both Arrive at the Same Number
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Discrete Logarithm in a Finite Field

If an eavesdropper sees gx mod p, how do they find x, e.g.,

3x = 729

x × log 3 = log 729

x =
log 729

log 3

x = 6

(x × log 3) mod p 6= (log 729) mod p

Modulus a prime p creates a finite (Galois) field where logarithms don’t work; see
https://en.wikipedia.org/wiki/Finite_field.
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Diffie–Hellman Illustrated with Paint

https://commons.wikimedia.org/wiki/File:Diffie-Hellman_Key_Exchange.svg
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Elliptic Curve Diffie–Hellman (ECDHE)

Similar to normal Diffie-Hellman because

• A generator g and modulus-prime p are used, and are public

• Computation commutativity is used by each participant to privately compute the

secret key

but it is different because

• Values exist as points on an elliptic curve, rather than being linear (on a number

line)

• g is an ordered-pair of integers (a 2D point), not a single integer

y2 = x3 + ax + b

Public constants a and b define the elliptic curve. Elliptic curves are Abelian groups,
allowing commutativity; see https://en.wikipedia.org/wiki/Abelian_group.
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ECDHE Exchange

• The participants each generate a random number, like DHE

• Starting from the generator point, they use point doubling and addition to simulate

moving the point their random number of times

• They transmit their new points to each other

• Using the received points they double/add them their random number of times

• Both participants end at the same point on the elliptical curve

• They use the x component of the result to derive a shared secret
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Elliptic Curve Doubling and Addition

Suppose the random number is 71 (binary 1000111) . We need to compute the effect of

starting at point g and advancing 70 more times along the elliptic curve. Doubling and

addition can be used to shorten the computation to reach the final point:

2 × g = 2g

2 × 2g = 4g

2 × 4g = 8g

2 × 8g = 16g

16g + g = 17g

2 × 17g = 34g

34g + g = 35g

2 × 35g = 70g

70g + g = 71g
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Efficient Exponentiation

Elliptic curve doubling and addition is similar to exponentiation by squaring (https://en.

wikipedia.org/wiki/Exponentiation_by_squaring), used by DHE and RSA to efficiently raise

integers to large integer powers. Modulus reduction can happen at each stage.
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ECDHE Point Computations

• Start with the generator point g

• Double it to get 2g

• Doubling involves computing a line tangent to the point being doubled and finding

the line intersection point with the elliptical curve

• This is effectively adding a point to itself, assuming the two points are on top of

each other

• Reflect the point across the x axis

• Addition involves drawing a line between two points and computing the

intersection point, then reflecting

=

http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/
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Elliptic Curve Doubling g

2g

g
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Elliptic Curve Doubling 8g

8g

16g
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Elliptic Curve Adding g and 2g

2g

3g

g
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Elliptic Curve Adding 64g and 32g

96g

32g

64g

45 / 64



Adding One vs. Adding Larger Numbers

96g

32g

64g

g

95g
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Elliptic Curve Distribution for Prime of 61

Modulus forces the values into a finite field.
https://hu.wikipedia.org/wiki/Elliptikus_g\%C3\%B6rbe\#/media/File:Elliptic_curve_y\%5E2\%3Dx\%5E3-x_on_finite_field_Z_61.PNG
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ECDHE Conclusion

Elliptical curve Diffie-Hellman requires less computation than DHE, e.g., 224-bit ECDHE

is as strong as 2048-bit DHE.
For an elliptical curve cryptography overview watch the first half of the video by Martijn
Grooten, https://youtu.be/yBr3Q6xiTw4, and for details see the video by Nigel Smart,
https://youtu.be/t3JzdKE-Fhs.
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5 Public/Private-Key Communication: RSA (Rivest, Shamir, Adleman)

Diffie–Hellman

• Negotiates a shared secret

• Uses a public exponent base g

• Uses a public modulus prime p

• Each client generates a secret exponent; is peer-to-peer key negotiation

RSA:

• Communicates a message

• The message is a base value, raised to an exponent

• The public modulus n is the product of two private primes, p and q

• One exponent e is public, another d is private

• Raising a message to the power e and then d (or the reverse order) returns the

original message

• One party controls the private key

• Performs encryption/decryption and signing/verification
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Using Two Exponents to Return to the Origin
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Notice decrypt/verify exponentiates the output of encrypt/sign, not the base value,

which is not known at that stage.
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Exponentiation p Returns the Base

Fermat’s Little Theorem, year 1640, states that for all m in the range 1 < m < p and p
prime

mp−1 mod p = 1

m×(mp−1 mod p) = m

(m × mp−1) mod p = m

mp mod p = m

This allows large exponentiation in a modulus field to return the base value:
• https://mathlesstraveled.com/2017/10/14/four-formats-for-fermat/

• https://mathlesstraveled.com/2017/11/13/
fermats-little-theorem-proof-by-modular-arithmetic/

• https://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_little_theorem
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Exponentiation p - 1 Can Be Applied Multiple Times

Exponentiation in a modulus field is cyclic, so multiple exponent values return the same

result. For integer k

mp−1 mod p = 1

mk×(p−1) mod p = 1

mk×(p−1)+1 mod p = m
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Using Two Primes to Return the Base

Euler’s Theorem, year 1763, states that for primes p and q, and lcm() as the least

common multiple

mp−1 mod p = 1

m(p−1)(q−1) mod (p×q) = 1

mlcm((p−1)(q−1)) mod (p × q) = 1

mlcm((p−1)(q−1))+1 mod (p × q) = m

• https://en.wikipedia.org/wiki/Euler%27s_theorem

• https://en.wikipedia.org/wiki/Euler%27s_totient_function
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Least Common Multiple Can Be Applied Multiple Times

For integer k

mlcm((p−1)(q−1))+1 mod (p × q) = m

mk×lcm((p−1)(q−1))+1 mod (p × q) = m
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Creating a Public/Private Exponent Pair

Instead of using p and q directly to compute an exponent pair that will return m, choose

a small exponent e and compute an exponent d that will return m:

e × d = k × lcm((p − 1)(q − 1)) + 1

(e × d) mod lcm((p − 1)(q − 1)) = 1

d =
1

e
mod lcm((p − 1)(q − 1))∗

* Computing a fraction in a modulus field is accomplished using the Chinese remainder
theorem, https://en.wikipedia.org/wiki/Chinese_remainder_theorem.
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Exponentiation Using d and e

mk×lcm((p−1)(q−1))+1 mod (p × q) = m

d × e = k × lcm((p − 1)(q − 1)) +

me×d mod (p × q) = m

med
mod (p × q) = m

mde
mod (p × q) = m
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Intermediate Modulus Operations

med
mod (p × q) = m

mde
mod (p × q) = m

(me mod (p × q))d mod (p × q) = m

(md mod (p × q))e mod (p × q) = m
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Summary of Exponentiation With Modulus

• Base values raised to specific exponents with modulus return the original values,
mp mod p = m

• Multiple exponents can do this, mk×(p−1)+1 mod p = m

• When using a modulus that is the product of two primes, finding an exponent that
returns the base value is hard to compute using just the modulus,
mlcm((p−1)(q−1))+1 mod (p × q) = m

• Multiple exponents can do this, mk×lcm((p−1)(q−1))+1 mod (p × q) = m

• Other exponent pairs, which are more distantly related to the two primes, can also
do this, e × d = k × lcm((p − 1)(q − 1)) + 1

• Exponent pairs can be applied in any order, med

mod (p × q) = mde

mod (p × q)

• Modulus can be applied to intermediate results, (me mod (p × q))d mod (p × q) = m
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Public/Private Designations

Public

• n = p x q, used as a modulus

• exponent e

Private

• exponent d

• primes p and q

• (p - 1)(q - 1), used to compute d

The RSA key length indicates the bits in n, e.g., 2048 bits.

Modulus is used to compute the exponent d and applied to the exponentiation result.

gyx
mod p = gxy

mod p
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RSA Application

Dual-exponent ordering allows for encryption and signing (authentication):

encrypt messagee mod n = encrypted

decrypt encryptedd mod n = message

sign hash(message)d mod n = signature

verify signaturee mod n = hash(message)

Encryption uses the public exponent e to encrypt a message to produce encrypted text that is
later decrypted with private exponent d. Signing uses the private exponent d to encrypt the hash
of a message to produce a signature which is later validated by applying the public exponent e.
Signing the hash of Diffie–Hellman parameters authenticates the parameters as being created by
the private key owner.
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6. Conclusion: What Cryptography Can Accomplish

Confidentiality Only the other party can read the original messages (ECDHE, AES)

Authenticity Verify who is on the other end of the communication channel (RSA via
X.509 certificates)

Integrity No other party can change or add messages (GCM, SHA)
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Further Cryptography Study

For additional study about cryptography, watch the nine video lessons at https://www.

youtube.com/playlist?list=PLqhpVxkBo1dPiKHym2CxOKEnqC0350JH2 . The videos were created by

Bill Buchanan, Professor in the School of Computing at Edinburgh Napier University.

His website, http://asecuritysite.com/, contains a wealth of information about digital

security.
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Further Cryptography Reading

• Niels Ferguson, Bruce Schneier, Tadayoshi Kohno, Cryptography Engineering:
Design Principles and Practical Applications, 2010: practical overview of

cryptographic protocols

• Christof Paar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and
Practitioners, 2010: scholarly overview of all modern cryptographic protocols

• Bruce Schneier, Applied Cryptography, 1996: historical but broad overview of the

cryptographic landscape
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Conclusion

https://momjian.us/presentations https://www.flickr.com/photos/vmax137/
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